Supermanifolds, Rigid Manifolds and Mirror Symmetry
نویسنده
چکیده
By providing a general correspondence between Landau-Ginzburg orbifolds and nonlinear sigma models, we find that the elusive mirror of a rigid manifold is actually a supermanifold. We also discuss when sigma models with super-target spaces are conformally invariant and describe their chiral rings. Both supermanifolds with and without Kähler moduli are considered. This work leads us to conclude that mirror symmetry should be viewed as a relation among super-varieties rather than bosonic varieties.
منابع مشابه
Geometric Aspects of Mirror Symmetry (with SYZ for Rigid CY manifolds)
In this article we discuss the geometry of moduli spaces of (1) flat bundles over special Lagrangian submanifolds and (2) deformed HermitianYang-Mills bundles over complex submanifolds in Calabi-Yau manifolds. These moduli spaces reflect the geometry of the Calabi-Yau itself like a mirror. Strominger, Yau and Zaslow conjecture that the mirror CalabiYau manifold is such a moduli space and they a...
متن کاملMirror Symmetry and Supermanifolds
We develop techniques for obtaining the mirror of Calabi-Yau supermanifolds as super Landau-Ginzburg theories. In some cases the dual can be equivalent to a geometry. We apply this to some examples. In particular we show that the mirror of the twistorial Calabi-Yau CP becomes equivalent to a quadric in CP×CP as had been recently conjectured (in the limit where the Kähler parameter of CP, t → ±∞...
متن کاملToric Calabi-Yau supermanifolds and mirror symmetry
We study mirror symmetry of supermanifolds constructed as fermionic extensions of compact toric varieties. We mainly discuss the case where the linear sigma A-model contains as many fermionic fields as there are U(1) factors in the gauge group. In the mirror super-Landau-Ginzburg B-model, focus is on the bosonic structure obtained after integrating out all the fermions. Our key observation is t...
متن کاملFedosov Supermanifolds: Basic Properties and the Difference in Even and Odd Cases
We study basic properties of supermanifolds endowed with an even (odd) symplectic structure and a connection respecting this symplectic structure. Such supermanifolds can be considered as generalization of Fedosov manifolds to the supersymmetric case. Choosing an appropriate definition of inverse (second-rank) tensor fields on supermanifolds we consider the symmetry behavior of tensor fields as...
متن کامل